o 1 !
\ |

FROM DOMAIN-DRIVEN DESIGN
N\ TO MICROSERVICE APIS
| OF QUALITY AND STYLE:
CONTEXT, CONTRACTS,
COMPONENTS

‘_!' Gl-Arbeitskreis Microservices und DevOps

Berlin, March 9, 2020

Prof. Dr. Olaf Zimmermann (ZI10)
Certified Distinguished (Chief/Lead) IT Architect
Institute ftr Software, HSR FHO
ozimmerm@hsr.ch

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Teaser Question (not from AppArch Lecture Exam at HSR FHO)

B You have been tasked to develop a RESTful HTTP API for a master data

management system that stores customer records and allows sales staff to
report and analyze customer behavior. The system is implemented in Java
and Spring. A backend B2B channel uses message queues (RabbitMQ).

® What do you do?

| hand over to my software engineers and students because all | manage to
do these days is attend meetings and write funding proposals.

| annotate the existing Java interfaces with @POST and @GET, as defined in
Spring MVC, JAX-RS etc. and let libraries and frameworks finish the job.

| install an APl gateway product in Kubernetes and hire a sys admin, done.

| design a service layer (Remote Facade with Data Transfer Objects) and
publish an Open API Specification (f.k.a. Swagger) contract. | worry about
message sizes, transaction boundaries, error handling and coupling criteria
while implementing the contract. To resolve such issues, | create my own
novel solutions. Writing infrastructure code and test cases is fun after all!

?

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 2

FHO Fachhochschule Ostschweiz © Olaf Z|m merm ann, 2020

INSTITUTE FOR
SOFTWARE

Agenda Today (And Key Take Away Messages)

1. Context matters
One size does not fit all (top-level design heuristic: "it depends")
Strategic and tactic Domain-Driven Design (DDD)
Context Mapper DSL and tools

2. Contracts rule

Unified interfaces are great, but not enough
More SOA and microservices myth busting
Microservice Domain-Specific Language (MDSL)

3. Components contain (cost and risk)

Towards a context-driven, contract-first service identification method
Microservice API Patterns (MAP) to structure the solution space

(time permitting) Industry trends and resulting research questions
Microfrontends, containerization, cloud-native 12-factor applications

M HSR 2 =
HOCHSCHULE FUR TECHNIK . INSTITUTE FOR
B E e Page 3 :

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2020 SBFTWARE

SOA 1.0: Order Management Application (Telecommunications)

Multi-Channel Order Management SOA in the Telecommunications
Industry (in production since Q1/2005) [OOPSLA 2003] Reference: IBM,

ECOWS 2007

* Functional domain Interface granularity (WSDL contract design)?

Client Web Services Channel
Message- or transport layer encryption ? E 4

?

— Order entry management

Presen-
— Two business processes: tation - | .
new customer, relocation Channel | WS Fagades
enlcobi el — Main SOA drivers: deeper ~_controller [#Ewsor. e ===

Stefan Peuser ¥

fivity Stub 1 —’<i>—' Actiity Stubn @

== automation grade, share Bus
Perspectives on services between domains 5 >"o"

- Process >
Web Services = Service design Layer Transaction boundaries inside process? e /'¢
ADRIYINE SOAR, WS L anc | Which BPM/workflow engine to use? | =
— - i i T T = BSF
Top-down from requirement Short Running e poo sen BH
and bottom-up from existing Process Activity =T
mplementation il [
wholesaler systems Activities ey ol I Activity 2 o
I - Implementation n A bl
— Recurring architectural Business o
decisions: services L Message exchange pattern?
* Protocol choices “Application Tran‘c’p?'t p:’tow'? _____
. . Services "
« Transactionality S ___________________ﬁ[_____ S
- Security policies Core Business ﬂaa %%
. Systems Objects
« Interface granularity : s e
11 Zurich Research Laboratory © 2007 IBM Corporation
B HSR g i
HOCHSCHULE FUR TECHNIK L INSTITUTE FOR
Page 4 s
. . RAPPERSWIL s SGFTWHHE

FHO Fachhochschule Ostschweiz © Olaf Zimmel’mann, 2020

Definition of Dane
5

Point estimates Planning poker

Context Matters

o}

Backlog
DN

Kanban board

Definition of Ready Relative estimation

Lead time
Task board

Agile practices

Backlog gmoming

RoleFeature

Given-
When-Then

)

ATDD

Bumdown chart Personas O Acceptance tests
Story mapping o Ubiquitous language
M M Scrum of Scums R
Professional services methods oy sty § G
Continuous
Integration Refactoring
DD
Collective Simple design
Ownership
IT Solution . . Rules of simplicity
; IT Solution Design Unktests
Requirements Atormate i

Analysis

Reference
Architectures

Component
Model

Use Case
Business Model
Requirements

Specification

Architecture
Overview
Diagram

Deployment
Units

System
Context

Requirements
onIT

Francisco Torres

Current IT
Environment

Service |
Char. An

Non-functional
requirements

Operational
Model

Version control

CRC cards

INSIGHTS

Context Is King

What's Your Software’s Operating Range?

on

Wiy eImangs

Development

Experience reports "

THEY SAY THAT experience is what you
8t when you were expecting something
else. This happened to me some years ago
while I was studying human-machine in-
terface concepts for a software system for
spacecraft opecations. One initial project
activiy involved aralyzing the existing
user interface 10 identify improvemeat
areas and new concepts to protocype
and explore. To that end, my colleagues
and I designed a questionnaire on usabil-
ity aspects, which a sample population
of the users answered. Some of the an
swers were counterintultive, o say the
least. In time, and after giving it some
thought, it saddenly dawned on me that
Thad lost sight of one key element: con-
text. With context in mind, everything
made more scase.

This lesson about context applies
10 not oaly GULrelated topies but also
many other software-engincering_ar-
eas, such as processes and tools. They
all have a nominal operating rang, so
10 speak. More on this later, but first Il
walk you through some of the GUT attri-

Quick design session

Exploratory testing

O Usailty testing

+ Cesare Pautasso
gano

Talking with users might change how you see the context of your
software project, often in unexpected ways. Drawing from his
software projects, Francisco
Torres shares stories on how listening to users taught him to stop
making assumptions and helped him define his software’s operating
range: the set of quality properties in which a software system

can successfully run. —Cesare Pautasso and Olaf Zimmerman

butes our study explored. In each case,
1l brief you on the feedback we received

the questionnaire and explaia
why, despite not maiching my expecta-
tiocs, the users’ point of view ultimacely
made sense.

When the Stakes Are Too High
The questionnaire asked the respon-
dents to assess how intuitive and ser
friendly the various displays wee. We
g0t some answers along the lines thac
some displays were “not user fricadly,”
*far from intuitive,” and “clumsy in the
extreme.” However, one theme also re-
curred in many of the answers. Learn-
ability and incuitiveness were less of an
issue because the users had beea for-
mally trained to operate the system, in-
cluding rehearsals and simulations.
One t scated that it wasa't
possible to use the system simply incui-
tively; some a peiori knowledge was re-
quired. Another one even proposed to
redesign some of the displays, trading
intuitiveness for efficient scrcen real €5

sesTEMBER/OCTOBER 201 | IEEE SOFTWARE 9

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

Page 5
© Olaf Zimmermann, 2020.

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

https://files.ifi.uzh.ch/rerg/amadeus/teaching/courses/it_architekturen_hs08/5_Developing_a_solution_architecture.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7217770

“Fictitious” Insurance Application/Integration Landscape

® Many design issues, typically recurring S .
Design issue

4
1

per system/team, per relationship, per interface | (decision requirec)
\

Customer Self-Service

Customer
Management

!
: System
{ Debt Collection

Data duplication and/or
on-demand exchange?
Strict/eventual consistency?

4

. A Y
Risk Management) _______________ I' Realization/ and procurement |
! (sourcing, staffing): 1
' ! Buy? Build? Rent? 1
! ' Technology? Vendor? Team? |}
’ 1 N e e e R4
s 1
JoTTT T e S\ 'I---J' """"""""""" \‘
i Data and control flow direction? 1 | Client influence on API design and !)
| Data formats (norms, transformations)? i | stability/evolution (governance)? ! Subdomain,
- Frequency of message exchange?] I API contracts and technologies?] System, Team
N e e e e e R _’
: - ;I:IAD:?ES?SHV\lfJII-.E FUR TECHNIK Page 6 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmel’mann, 2020 SBFTWARE

Domain-Driven Design (DDD) Overview

m Emphasizes need for modeling and communication -
(DPSARGAY

Tackling Complexit i the Heart of Sofware
Y {] -
‘.

Ubiquitous language (vocabulary) — the domain model

®m Tactic DDD - “Object-Oriented Analysis and Design
(OOAD) done right”

Emphasis on business logic in layered architecture
Decomposes Domain Model pattern from M. Fowler

% %
Patterns for common roles, e.g. Entity, Value Object, A Lh
Repository, Factory, Service; grouped into Aggregates R .m

and Practices of
Domain-Driven Design

Foreword by Masin Fowler

' DOMAIN-DRIVEN

m Strategic DDD - “agile Enterprise Architecture
and/or Portfolio Management”

Books (Selection, Reverse Chronological Order)

M. Ploed, Hands-on Domain-diven Diesign - by example, Leanpub

* Domain-Driven Design: The First 15 Years, Leanpub

*# V. Vernon, DDD Distilled; a German translation is available: DDD Kompalkt
* S, Millett with N. Tune, Patterns, Principles, and Practices of DDD, 1. Wiley &
Sons 2015

V. Vaughn, Implementing DD, Addison Wesley 2014

F. Marinescu, Domain-Driven Design Quickly (Infod e-book, 2008)

Models have boundaries

Teams, systems and
their relations shown in
Context Maps of
Bounded Contexts

O HSR
HOCHSCHULE FUR TECHNIK Pa.ge 7

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2020

INSTITUTE FOR
SOFTWARE

https://martinfowler.com/eaaCatalog/domainModel.html

A Strategic DDD Context Map with Relationships

M Insurance scenario, example model from https://contextmapper.org/

Customer Self-Service

Printing
Context

Context Ok >
U 74 U
D U
Customer/Supplier ‘qQ
Customer
Management Context
D
- D ACL
Risk Management FORMIS
Context Partnership cO .
Policy Management

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

Context

Debt Collection

Context

Shared Kernel

Bounded
Context

O HSR
HOCHSCHULE FUR TECHNIK
. . RAPPERSWIL Page 8

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmel’mann, 2020

SOFTWARE

INSTITUTE FOR

https://contextmapper.org/
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Context Mapper: A DSL for Strategic DDD

What is Context Mapper?

Context Mapper provides a DSL to create Context Maps based
on strategic Domain-driven Design (DDD). DDD with its Bounded
Contexts offers an approach for decomposing a domain or
system into multiple independently deployable (micro-)services.
With our Architectural Refactorings (ARs) we provide
transformation tools to refactor and decompose a systemin an
iterative way. The tool further allows you to generate MDSL
(micro-)service contracts providing assistance regarding how
your system can be implemented in an (micro-)service-oriented
architecture. In addition, PlantUML diagrams can be generated
to transform the Context Maps into a graphical representation.
With Service Cutter you can generate suggestions for new
services and Bounded Contexts.

m Eclipse plugin, based on:
Xtext, ANTLR
Sculptor (tactic DDD DSL)

m Creator: S. Kapferer

CONTEXT
MAPPER

ContextMap DDD CargoSample Map {
type = SYSTEM LANDSCAPE
state = AS_IS

contains CargoBookingContext

contains VoyagePlanningContext

contains LocationContext

CargoBookingContext [SK]<->[SK] VoyagePlanningContext
CargoBookingContext [D]<-[U,OHS,PL] LocationContext

VoyagePlanningContext [D]<-[U,OHS,PL] LocationContext

SK: Shared Kernel, PL: Published Language
D: Downstream, U: Upstream
ACL: Anti-Corruption Layer, OHS: Open Host Service

Term projects and Master thesis @ HSR FHO

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 9
© Stefan Kapferer, Olaf Zimmermann, 2020.

INSTITUTE FOR
SOFTWARE

[T T]

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Context Mapper: DSL implements Meta-Model and Semantics

m A Domain-Specific Language (DSL) for DDD:
Formal, machine-readable DDD Context Maps via editors and validators
Model/code generators to convert models into other representations

Model transformations for refactorings (e.g., “Split Bounded Context”)

context-mapper-examples - context-mapper

/src/main/resources/insuranc

File Edit Navigate Search Project Run Window Help

O« Wi iw HEv O~

* Package Explorer =

~ & context-mapper-examples [contex
~ & src/main/resources
» erarchitectural-refactorings
» & ddd-sample
~ arinsurance-example
+ erimages
#Insurance-Example_Context-
®Insurance-Example_Context-
@ Insurance-Example_Team-M:
« README.md
+ = JRE System Library [J:
& bin
» ez gradle

vaSE-18]

FErsrc
» &sre-gen
= build.gradle
gradlew
gradlew.bat
LICENSE
README.md
settings.gradle

Plugin update site:

Description Res ce Path ocatic

Writable Insert 1: 1

ple/Insurance-Example_Context-Map.cml - Eclipse IDE

- 8 x

WGBS s G e e Quick Access B oW
' @Insurance-Example_Context-Map.cml = B Task List = - s
2-ContextMap InsuranceContextMap { &% ¥ wihe ~
3 type = SYSTEM_LANDSCAPE
4 state = TO_BE
5 Find + All + Activat...
6 /* Add bounded contexts to this context map: */
7 contains CustomerManagementContext
8 contains CustomerSelfServiceContext
9 contains PrintingContext
1@ contains PolicyManagementContext
11 contains RiskManagementContext
12 contains DebtCollection
13
14 /* Define the context relationships: */
15
16- CustomerSelfServiceContext [D,C]<-[U,S] CustomerManagementContext : Customer_Fron
17 exposedAggregates = Customers
18 1
19 = Qutline = =a
20= CustomerManagementContext [D,ACL]<-[U,O0HS,PL] PrintingContext { &
21 implementationTechnology = "SOAP" o f
22 downstreamRights = INFLUENCER = «Insurance-Example_Con
23 exposedAggregates = Printing == InsuranceContextMap
ié = Customer_Frontend
26 PrintingContext [U,OHS,PL]->[D,ACL] PolicyManagementContext { » = CustomerManagement
27 implementationTechnology = "SOAP" » = CustomerSelfServiceC
3:; exposedAggregates = Printing » 1+ PrintingContext
30 + 1= PolicyManagementCor
31 RiskManagementContext [P]<->[P] PolicyManagementContext { + = RiskManagement Cont
32 implementationTechnology = “RabbitMQ" .
33 + = DebtCollection
34 » = InsuranceDomain
35 PolicyManagementContext [D,CF]<-[U,0HS,PL] CustomerManagementContext {
36 implementationTechnoloay = "RESTful HTTP"
[Problems = .« Javadoc|& Declaration - 1
0 items

https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 10

INSTITUTE FOR
SOFTWARE

© Stefan Kapferer, Olaf Zimmermann, 2020.

https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/

Context Mapper: Domain-Specific Language

ContextMap DDDSampleMap {
contains CargoBookingContext
contains VoyagePlanningContext

contains LocationContext
CargoBookingContext
->

[U,OHS, PL] LocationContext

VoyagePlanningContext

} A

Influence/data flow direction: ->, <->
(upstream-downstream or symmetric)

[SK]<->[SK]

[D]<-[U,OHS, PL]

Bounded Contexts
(systems or teams)

DDD relationship patterns
(role of endpoint)

——“EE:——_—>

VoyagePlanningContext

[D] CargoBookingContext

LocationContext

SK: Shared Kernel, PL: Published Language
D: Downstream, U: Upstream
ACL: Anti-Corruption Layer, OHS: Open Host Service

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

Page 11

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

© Stefan Kapferer, Olaf Zimmermann, 2020.

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

The reverse engineering and discovery

component can generate CML Context Maps

from existing source code. This allows L
to reverse engineer the architecture DiscoveryLibrary
model ih projects with existing monoliths T

Tool Big Picture

or microservices.

B Context Mapper
architecture

Modelled with Context
Mapper DSL

UML generated

£1| OHS,PL
StructuredServiceDecomposition

The Service Cutter integration into Context -
Mapper allows to analyze the Context Map
with respect to coupling criteria and

supports to suggest improved Context Maps.
The Service Cutter library exposes an API
{Open Host Service and Published Language)
used by Context Mapper to generate the

new decompaositions.

Provides the Context Mapper DSL
{CML) modeling language to express
architectures on the basis of
Strategic Domain-driven Design
{DDD) patterns.

e

Upstream-Downstream

|

use via ACL

I
I
I
: use as CONFORMIST (CF)
I
I
|

m-Downstream

UBLISHED_LANGUAGE {PL})

]

Shared Kernel

LanguageCore

Upstream-Downstream

I
I
I
I
l'use
I
I
I

ArchitecturalRefactorings

PUBLISHED_LANGUAGE (PL)

Architectural Refactorings (ARs)
allow to improve the architecture
model iteratively.

]
Generators

The generators allow to generate

other representations of the architecture
derived by a given CML Context

Map.

O HSR
HOCHSCHULE FUR TECHNIK
. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 12

© Olaf Zimmermann, 2020.

INSTITUTE FOR
SOFTWARE

Agenda Today (And Key Take Away Messages)

1. Context matters
One size does not fit all (top-level design heuristic: "it depends")
Strategic and tactic Domain-Driven Design (DDD)
Context Mapper DSL and tools

2. Contracts rule

Unified interfaces are great, but not enough
More SOA and microservices myth busting
Microservice Domain-Specific Language (MDSL)

3. Components contain (cost and risk)

Towards a context-driven, contract-first service identification method
Microservice API Patterns (MAP) to structure the solution space

(time permitting) Industry trends and resulting research questions
Microfrontends, containerization, cloud-native 12-factor applications

o HSR : =
HOCHSCHULE FUR TECHNIK . INSTITUTE FOR
BN ceeeersw Page 13 .

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2020 SBFTWARE

"Napkin Sketch" of SOA Realizations (Adopted from G. Hohpe)

___________‘_‘—_/——\
.....Discovery . Service
' Registry
_ Service
our focus: Register: Endpoint
Message E , \ Application
j Document
> IEI
h | | |
(data) contracts 1 |
AStbada J N
- _ | =
Conversation : T :
. Transform
Middleware less popular, Orchesltration Application
often custom build (term I v o
also used in deployment Rules ICroservices:
___________________ and clustering context
. Fa-;::;:z::ll'.::l""'""""""""""""""""'-Z'Z-.Z'Z-.Z'Z-.Z'Z-.Z'Z:ZZ.ZZ.ZZ:Z'Z:Z'Z-.Z'Z-.Z'Z-.Z'Z-.Z'Z-.Z'Z:Z'Z:Z'Z:Z """""" VR B IN5TITUTE FDR
B ceeersw Page 14 - el

hhhhhhhhhhhhhhhhhhhhhhh weiz

© Olaf Zimmermann, 2020.

Mythbusting (1/4): SOA 1.0 (2003/2004 to 2008/2009)

m Myth: SOA and microservices solve different problems, not comparable

Application boundaries blurred in the Web age
See Microservices Tenets article, see OOPSLA practitioner reports

m Myth: Traditional SOA is "heavyweight" and requires centralization and
enterprise-wide data normalization in an Enterprise Service Bus (ESB)
What is heavyweight (definition)? Resource usage? Maintenance?

SOAP also uses HTTP by default; JISON not much lighter than "nice" XML
Have a look at the dependencies of services meshes (example: Istio)

Most practices recommended today already appeared in the (good) SOA
tutorials in the 2000s

e.g. ho canonical data model, no single point of failure, no business logic in ESB
Yes, poor SIA implementations did occur (but that also holds for microservices)

m Myth: SOA and XML-based "Web" services are coupled with each other

Actually, they are less related that REST and HTTP are
Although REST claims to be an architectural style (only implemented once)

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 15 : INSTITUTE FOR
. SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m merm ann, 2020

http://rdcu.be/mJPz

Mythbusting (2/4): Web Services and REST

m Myth: REST is a protocol

It is an architectural style defined by abstract constraints
So asking for a “REST API” is like asking for “Gothic window” (material?)

m Myth: SOAP is a protocol
It is a message exchange format, HTTP typically used for message transfer
Other protocols (theoretically) possible
m Myth: REST and SOAP can be compared
Can the Gothic style and concrete building materials/norms be compared?

m Myth: Thought leaders are objective and independent

There is an “industrial NN complex” (NN = Agile, REST, ...)

To paraphrase M. Fowler at Agile Australia
Book authors and consultants do have commercial agendas (lie vendors)
And should not reference their own papers/books only (SOA Design Patterns?)

o HSR : =
HOCHSCHULE FUR TECHNIK . INSTITUTE FOR
BN ceeeersw Page 16 .

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2020 SBFTWARE

A Consolidated Definition of Microservices

® Microservices architectures evolved from previous incarnations of
Service-Oriented Architectures (SOAs) to promote agility and elasticity

Independently deployable, scalable and changeable services,
each having a single responsibility

Request

Modeling business capabilities message
representation

Detailed analysis: Zimmermann, O., Microservices

Tenets: Agile Approach to Service Development

and Deployment, Springer Journal of Computer

Science Research and Development (2017) Adapters
Data Ports
Domain Logic

Often deployed in lightweight containers

Encapsulating their own state, and communicating via message-based
remote APIs (HTTP, queueing), IDEALIly in a loosely coupled fashion

Facilitating polyglot programming and persistence

Leveraging DevOps practices including decentralized continuous delivery
and end-to-end monitoring (for business agility and domain observability)

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 17 : INSTITUTE FOR

[]
FHO Fachhochschule Ostschweiz © Olaf Z|m merm ann, 2020 SDFTWAR L

https://www.ifs.hsr.ch/fileadmin/user_upload/customers/ifs.hsr.ch/Home/projekte/ZIO-CHOpenDay-CCaSAWAv10p.pdf
http://rdcu.be/mJPz

Mythbusting (3/4): Microservices (since 2014)

m Myth: Self-Contained Systems are new, different form MS(A) and
“monolith”

Evidence: e.g., S. Brown: Modular Monolith

m Myth: Distributed service mesh sidecars are easier to create, configure,
manage than SOA-days ESBs

Evidence: notion of federated ESBs, EIP pattern mapping
Open source lock in replacing vendor lock in

m Myth: RESTful HTTP is the only protocol that is required and permitted
MOM and even RPC have their place

Evidence: Google gRPC, S. Newman first book on Microservices
m Myth: Unified interface is sufficient as contract

The success of Swagger/Open API Specification suggests that more
elaborate API Descriptions are required

Data contract, pre- and postconditions, error handling, ...

O HSR
. . HOCHSCHULE FUR TECHNIK Page 18

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2020

INSTITUTE FOR
SOFTWARE

https://www.youtube.com/watch?v=5OjqD-ow8GE
https://microservice-api-patterns.org/patterns/foundation/APIDescription.html

OpenAPI Specification (OAS): An Interface Definition Language (IDL)

/pets/{petid}:
ey . . get:
N Wlklpedla IIStS (Only) 23 IDLS summary: Info for a specific pet
. operationId: showPetById
OAS is one of them -
Bound to HTTP - pets
parameters:

- name: petId

TOOLS in: path

required: true

) SWAGGER Ul - - -
————— description: The id of the pet to retrieve

Use a Swagger specification to drive your

= ‘ schema:
E}_—-’: AP| documentation. Demo and type: string
o Download. responses:
200"
SWAGGER EDITOR description: Expected response to a valid request
An editor for designing Swagger content:
specifications from scratch, using a application/json:
simple YAML structure. Demo and schema:
Source. $ref: "#/components/schemas/pPet™
default:
4 :ﬁ 'ﬁ' SDK GENERATOIIQS | description: unexpected error
Turn an API spec into client SDKs or content:
mm‘h‘ @ server-side code with Swagger Codegen. application/json:
3 ; php) schema:

$ref: "#/components/schemas/Error"

M HSR 2 =
HOCHSCHULE FUR TECHNIK L INSTITUTE FOR
Page 19 .
B E e H SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2020

https://en.wikipedia.org/wiki/Interface_description_language
http://swagger.io/

Contracts in Microservice Domain-Specific Language (MDSL)

API description SpreadSheetExchangeAPI

data
data

type CSVSpreadsheet CSVSheetTab*
type CSVSheetTab {"name": D<string>,
"content": Rows*}
Rows {"line": ID<int>,
"columns":Column+}
Column {"position": ID<string>,
"header": D<string>?,
<<Entity>> "cell": Cell}
Cell {"formula":D<string>
| "intValue": D<int>
| "longvalue": D<long>
| "text™: D<string>}

data type

data type

data type

® Data contract

Compact, technology-neutral
Inspired by JSON, regex

.

B Endpoints and operations

Elaborate, terminology from
MAP domain model

.

exposes

operation uploadSpreadheet with responsibility N(
expecting payload CSVSpreadsheet

delivering payload {"successFlag":D<bool>, ID}

expecting payload ID
delivering payload CSVSpreadsheet

endpoint type SpreadSheetExchangeEndpoint serves a§ TRANSFER_RESOURCE

operation downloadCSVFile with responsibility REJRIEVAL_OPERATION

Abstraction of REST resource

TIFICATION_OPERATION Abstraction of WS-* concepts

m API client, provider, gateway,
governance (SLA, version, ...)

reporting error "SheetNotFound"

API provider SpreadSheetExchangeAPIProvider
offers SpreadSheetExchangeEndpoint

API client SpreadSheetExchangeAPIClient
consumes SpreadSheetExchangeEndpoint

Reference: https://socadk.qgithub.io/MDSL/index

How does this notation compare
to Swagger/JSON Schema
and WSDL/XSD?

n?

N}

]

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2020.

INSTITUTE FOR
SOFTWARE

Page 20

https://socadk.github.io/MDSL/index

Mythbusting (4/4): (Micro-)Services Design

m Myth: Services always must be small/fine-grained

How to measure? How to observe?
What about dependencies? They increase.

m Myth: A business capability has to be a function bale .

And Entity Service (always) are an anti pattern
Archive? Logbook? File share?

m Myth: The DDD patterns fully solve the decomposition problem

Process required (and related knowleddge/patterns), see here and here
Subdomains and Aggregates and Bounded Contexts (BCs) are as hard to
find as services, so "turn BC into microservice" only delegates the problem

m Myth: “Hello World” implementations are suited to demonstrate the
value and price of microservices

Domain model needs to have a certain size and complexity e.g., to see
ramifications of replication, eventual consistency (see Lakeside Mutual)

O HSR
HOCHSCHULE FUR TECHNIK

BN ceeeersw Page 21
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2020

INSTITUTE FOR
SOFTWARE

https://ifs.hsr.ch/index.php?id=15266&L=4
https://ifs.hsr.ch/index.php?id=15666&L=4
https://github.com/Microservice-API-Patterns/LakesideMutual

Agenda Today (And Key Take Away Messages)

1. Context matters
One size does not fit all (top-level design heuristic: "it depends")
Strategic and tactic Domain-Driven Design (DDD)
Context Mapper DSL and tools

2. Contracts rule

Unified interfaces are great, but not enough
More SOA and microservices myth busting
Microservice Domain-Specific Language (MDSL)

3. Components contain (cost and risk)

Towards a context-driven, contract-first service identification method
Microservice API Patterns (MAP) to structure the solution space

(time permitting) Industry trends and resulting research questions
Microfrontends, containerization, cloud-native 12-factor applications

o HSR : =
HOCHSCHULE FUR TECHNIK . INSTITUTE FOR
BN ceeeersw Page 22 .

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2020 SBFTWARE

DDD Applied to (Micro-)Service Design

m M. Ploed is one of the “go-to-guys” here (find him on Speaker Deck)

Applies and extends DDD books by E. Evans and V. Vernon

Microservices

Context Maps
™M

Down
Microservice
v Bounded Contexts
Domain-driven Design o

Michael Pl&d, @bitboss Up
INNOQ Aggregates
Reference: JUGS presentation, Bern/CH, Jan 9, 2020
n HSR "
EE :Ao:::ﬂcswll.-s FOR TECHNIK Page 23 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m merm ann, 2020 SBFTWAHE

https://speakerdeck.com/mploed
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2

DDD and Service Identification/Design

https://preview.microservice-api-patterns.orqg/patterns/tutorials/tutorial2

CustomerManagement

/ OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

Customelr Supplier Upstream-D ownstream
| |
use \use : CONFORMIST

CustomerSelfService

]]
PolicyManagement

Shared Kernel

L}
RiskManagement

Input: analysis model, NFRs

Step 0: Baseline (Starting
Point)

Challenges (Tasks)

Step 1: Identification and

Foundation Patterns

Step 2: Roles and
Responsibilities (R)

Step 3: Basic and Composite
Structures (S)

Step 4: Quality Enhancements
(Q)

Step 5: Evolution Patterns

Tasks: Select pattern, refine design, refactor

Output: API contracts (here: MDSL)

API description LakesideMutual
data type StatusInformation (V<bool>,L)

endpoint type CustomerManagement serves as INFORMATION_HOLDER_RESOURCE

operation findCustomer with responsibility RETRIEVAL_OPERATION
expecting payload V<void> // no payload

delivering payload "customerIDList":ID*

operation readCustomer with responsibility RETRIEVAL_OPERATION
expecting payload "customerID":ID

delivering payload "customerDTO":V?

operation updateCustomer with responsibility EVENT_PROCESSOR

expecting payload "customerDTO":V?

delivering payload StatusInformation

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 24

INSTITUTE FOR
SOFTWARE

© Olaf Zimmermann, 2020.

https://preview.microservice-api-patterns.org/patterns/tutorials/tutorial2

Calls to Service Operations are EIP-style Messages

curl -X GET "http://localhost:B888/customers/rgppBwkpec” -H "accept: #=/x"

3 -t =

" Tlinks": [
{ T — mender Command Receiver
"href": "string", MESSEIQE
"hreflang": "string",
Sample request "media": "s‘l.'_r'ing“,, = gEtLaStTradEPr||:E|:"D|S":|,
"rel": "string",
message "templated": true,
. "title": "string",
(note: PUTs an_d POSTs S | Sayiond |
would look different) : } 7
"::r"ll'thd'ay“: "2819-82-12T89:160:87.370Z",
neity": "string®, Embed nested Wrapper
"customerId": "string", :
"email": "string", ent|ty data’?
"firstname": "string",
"lastname": "string", or | Header| Payload | Envelope
n EH- t 3 ": l -
e Link to sparate Y
"city": "string", : E Wrapper
“postal.Cude“: llstr—-i"gllj IreSOurCe?
"streetAddress": "string"
Response] 1
message MphoneNumber™: Fstring", Header| Payload Envelope
"postalCode": "string",
structure nptreetAddress®s mstring" [Header || Payload |
{[...]} -- some JSON (or other MIME type) https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html
o HSR g i
HOCHSCHULE FUR TECHNIK Page 25 : INSTITUTE FOR
HE RAPPERSWIL H SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m merm ann, 2020

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

Introducing... Microservice API Patterns (MAP)

m |dentification Patterns:

DDD as one practice to
find candidate endpoints
and operations

Quality Patterns

How can an API provider achieve
a certain level of quality of the
offered APL, while at the same
time using its available resources
in a cost-effective way?

How can the quality tradeoffs be

communicated and accounted

for?

READ MORE —>

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

/ Microservice APl \

HSR Patterns (MAP)

Foundation Patterns

What type of (sub-)systems and

components are integrated?

Where should an API be

accessible from?

How should it be documented?

Responsibility Patterns

Which is the architectural role
played by each API endpoint and
its operations?

How do these roles and the
resulting responsibilities impact
(micro-)service size and

granularity?

READ MORE =

Structure Patterns

What is an adequate number of
representation elements for

request and response messages?
How are these elements

structured?

How can they be grouped and
annotated with usage

information?

READ MORE =

B Evolution Patterns:

Recently workshopped
(EuroPLoP 2019)

http://microservice-api-patterns.org

Page 26
© Olaf Zimmermann, 2020.

SOFTWARE

INSTITUTE FOR

http://microservice-api-patterns.org/

Microservices API| Patterns (MAP): Pattern Index by Category

o _m

Responsibility Structure
Endpoint Roles Representation Elements Quality Management and Governance

60)(OC?SQIH esource omic arameter e
’ g R fromic parame Y EuroPLoP 2018
@ Information Holder Resource Atomic Parameter List 6(2\'; Rate Limit
Evolution
Version Identifier Hi:' Hf' Two In Production vi.i|| Limited Lifetime Guarantee
|
1 Semantic Versioning %] Hf' Aggressive Obsolescence vi.1 || Eternal Lifetime Guarantee
*®
—
EJ Experimental Preview
Y|P EuroPLoP 2019
i v
N
Transactional Data Holder Annotated Parameter Collection Reference Management
Master Data Holder Context Representation Embedded Entity
Static Data Holder Pagination Eu rOPLOP 2017 Linked Information Holder
P B B y
http://microservice-api-patterns.org
M HSR 2 =
HOCHSCHULE FUR TECHNIK . INSTITUTE FOR
B E e Page 27 .
. SOFTWARE

© Olaf Zimmermann, 2020.

FHO Fachhochschule Ostschweiz

http://microservice-api-patterns.org/

API Description Pattern

® Which knowledge should be

shared between an API
provider and its clients?

® How should this knowledge

be documented?

(Minimal API Description
APl Endpoint Information Operation Names
Network address of endpoint must be specifiedl.b[. g‘tafj:?t%?:&cgrqaeﬂzaning}
N

Elaborate API Description

~

API Endpoint Information (incl. security controls Operation Names

[Parameter Data Types

Message Content
(Structure and Meaning)

’ Usage Examples Error Codes and Reports

[Compliance Test Cases

.

[Behavior (Idempotency/State Changes?)

[Versioning Metadata

https://microservice-api-patterns.org/patterns/foundation/APIDescription.html

O HSR

HOCHSCHULE FUR TECHNIK
. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 28
© Olaf Zimmermann, 2020.

INSTITUTE FOR
SOFTWARE

https://microservice-api-patterns.org/patterns/foundation/APIDescription.html

MAP Example: Pagination (1/2)

m Context
An API endpoint and its calls have been identified and specified.

® Problem
How can an API provider optimize a response to an API client that should
deliver large amounts of data with the same structure?

m Forces

Data set size and data access profile (user needs), especially number of
data records required to be available to a consumer

Variability of data (are all result elements identically structured? how often
do data definitions change?)

Memory available for a request (both on provider and on consumer side)
Network capabilities (server topology, intermediaries)
Security and robustness/reliability concerns

/ Microservice APl \

Patterns (MAP)

O HSR
. . HOCHSCHULE FUR TECHNIK Page 29

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2020

INSTITUTE FOR
SOFTWARE

MAP Example: Pagination (2/2)

m Solution

Divide large response data sets into manageable and easy-to-transmit chunks.
Send only partial results in the first response message and inform the consumer

w

f

how additional results can be obtained/retrieved incrementally.

Process some or all partial responses on the consumer side iteratively as
needed; agree on a request correlation and intermediate/partial results
termination policy on consumer and provider side.

B Variants

Cursor-based vs. offset-based

Legend: Request

(Query)

(Query Result) (from EIP’i

Endpoint API Provider Data Store
* Page -1: {(r).(r2)} (e.g., RDBMS, NoSQL, EIS)
® Consequences) T R
) — W
E.g. state management required prpes f—j . 62 0
Page 2: {(r3),(r4)} @ {()l ()’ ()
MNext Page: 3 anay
-~ (r10)}
®m Know Uses Nl
Pa§e=3
i ; N Bt~ Entenprics Information Systam
Public APIs of social networks = | | : R S
Page 313 lanagement System
/ Microservice APl \
= HSR Patterns (MAP) : e
" . INSTITUTE FOR
. . :AD:;—IESRCSI—‘IA:II.-E FUR TECHNIK Page 30 :

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2020.

SOFTWARE

Result Record Set)

Mini-Exercise: Can MAP serve as a map/guide to APl design?

m Let’s have a look at the language organization and selected patterns...

http://microservice-api-patterns.orq

Website public since 2/2019; experimental preview site available to beta testers

Sample patterns (suggestions):

Request Bundle, Embedded Entity, Wish List, APl Key, Two in Production

Microservice APl Patterns HOME CATEGORIES

Microservice API Patterns (MAP) take a broad view on API design and evolution, primarily focussing on
message representations - the payloads exchanged when APIs are called. These payloads have structure.
The representation elements in the payloads differ in their meanings as API endpoints and their
operations have different architectural responsibilities. Furthermore, the chosen representation structures

strongly influence the design time and runtime qualities of an APL

Our Microservice API Patterns capture proven selutions to design problems commeonly encountered when

specifying and implementing message-based APIs in terms of their structure, responsibilities, and quality.

PATTERN FILTERS PATTERN INDEX AUTHORS

Microservice
API Patterns

Ol=f Zimmermann, Mirke Stocker, Uwe Zdun,
Daniel Libke, Cesare Pautasso

>

Open Overview Slide Show in New Window

HSR

HOCHSCHULE FUR TECHNIK Page 31

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2020

INSTITUTE FOR
SOFTWARE

http://microservice-api-patterns.org/
https://microservice-api-patterns.org/

Key Messages of this Talk

m Itis the API contract (and its implementations) that make or break

projects — not (or not only) middleware and tools

Frameworks and infrastructures come and go, APIs stay

m Microservice API Patterns (MAP) language/components) ratorian

Public MAP website now available in Version 1.2.1

Quality Management and
Governance

> API Key
< Error Report
i Rate Limit

i, Service Level Agreement v

20+ patterns, sample implementation in public repo, supporting tools

m Microservices Domain-Specific Language (MDSL)

Uses MAPs in service contracts (as decorators)
Can be generated from DDD bounded contexts

data type Customer {"name": V<string>, "address"

endpoint type CustomerLookup
exposes

operation findCustomer

expecting payload "searchFilter": V<string>

delivering payload "customerList": Customer*

m Context Mapper tool supporting strategic Domain-Driven Driven

Design (DDD) and architectural refactoring
Other tools emerging

B Research areas (ZIO):

Service modeling, identification, decomposition, refactoring

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 32

FHO Fachhochschule Ostschweiz © Olaf Z|m merm ann, 2020

INSTITUTE FOR
SOFTWARE

https://microservice-api-patterns.org/

Teaser Question Revisited

® You had been tasked to develop a RESTful HTTP API for a master data
management system that stores customer records and allows sales staff to
analyze customer behavior. The system is implemented in Java and Spring.
A backend B2B channel uses message queues (RabbitMQ).

®m What do you do (now)?

| hand over to my software engineers and students because all | manage to
do these days is attend meetings and write funding proposals.

| annotate the existing Java interfaces with @POST and @GET, as defined in
Spring MVC or JAX-RS etc . and let libraries and frameworks finish the job.

| install an APl gateway product in Kubernetes and hire a sys admin, done.

| design a service layer (Remote Facade with Data Transfer Objects) and
publish an Open API Specification (f.k.a. Swagger) contract. | worry about
message sizes, transaction boundaries, error handling and coupling criteria
while implementing the contract. To resolve such issues, | create my own
novel solutions. Writing infrastructure code and test cases is fun after all!

| leverage Context Mapper, MDSL, MAP for API design and evolution ©

o HSR g
HOCHSCHULE FUR TECHNIK . INSTITUTE FOR
BN ceeeersw Page 33 .

FHO Fachhochschule Ostschweiz © Olaf Z|m merm ann, 2020 SDFTWAR L

L X&))
l- “‘ | —

‘ FROM DOMAIN-DRIVEN DESIGN
B\ TO MICROSERVICE APIS

‘ OF QUALITY AND STYLE —
BACKUP CHARTS

 § Gl-Arbeitskreis Microservices und DevOps

Berlin, March 9, 2020

Prof. Dr. Olaf Zimmermann (ZI10)
Certified Distinguished (Chief/Lead) IT Architect
Institute ftr Software, HSR FHO

ozimmerm@hsr.ch

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

DDD Applied to (Micro-)Service Design ctd., Source:

B N. Tune and S. Millett: Designing Autonomous Teams and Services

Describe how to coevolve organizational and technical boundaries to
architect autonomous applications and teams based on DDD Bounded
Contexts and (micro-)services.

m O. Tigges: How to break down a Domain to Bounded Contexts

Presents criteria to be used to identify Bounded Contexts.

B R. Steinegger et al.: Overview of a Domain-Driven Design Approach to
Build Microservice-Based Applications

Describes a development process to build MSA applications based on the
DDD concepts, emphasizing the importance of decomposing a system in
several iterations.

B A. Brandolini: Introducing Event Storming

Proposes a workshop-based technique to analyze a domain and discover
bounded contexts, following events through the system/business process
and detecting commands, entities (and more) along the way.

o HSR : =
HOCHSCHULE FUR TECHNIK . INSTITUTE FOR
BN ceeeersw Page 35 .

FHO Fachhochschule Ostschweiz © Stefan Kapferer, Olaf Zimmel’mann, 2020 SBFTWARE

https://www.oreilly.com/library/view/designing-autonomous-teams/9781491994320/
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://www.semanticscholar.org/paper/Overview-of-a-Domain-Driven-Design-Approach-to-Steinegger-Giessler/c27543389bf0f9d5ac337963c474496979ef2a2d
https://leanpub.com/introducing_eventstorming

From DDD to RESTful HTTP APIs

® “Implementing DDD” book by V. Vernon (and blog posts, presentations):

No 1:1 pass-through (interfaces vs. application/domain layer)

Bounded Contexts (BCs) realized by API provider: one service APl and IDE
project for each team/system BC (a.k.a. microservice)

Agagregates supply API resources (or responsibilities) of service endpoints
Services donate top-level (home) resources in BC endpoint as well

The Root Entity, the Repository and the Factory in an Aggregate suggest
top-level resources; contained entities yield sub-resources

Repository lookups as paginated queries (GET with search parameters)

B Additional rules of thumb (from our experience and additional sources):
Master data and transactional data go to different contexts/aggregates
Creation requests to Factories become POSTs
Entity modifiers become PUTs or PATCHes
Value Objects appear in the custom mime types representing resources

0 HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 36 : INSTITUTE FOR
. SOFTWARE

© Olaf Zimmermann, 2020.

FHO Fachhochschule Ostschweiz

https://www.youtube.com/watch?v=lUCLFOISuXk
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/DDD_Aggregate.html
http://gorodinski.com/blog/2012/04/14/services-in-domain-driven-design-ddd/
https://martinfowler.com/eaaCatalog/repository.html
https://microservice-api-patterns.org/
https://www.ifs.hsr.ch/index.php?id=15666&L=4

SOA 1.0: WSDL (XML Language for Service Descriptions)

Web Services Description Language (WSDL)

binding

. ",
. -,
L3
-

identical name attributes
or element names

Containment
—>

Relationship

Linked-to
> Relationship

definition”

Logical relationships between WSDL elements

= WSDL document elements
» Type definitions and imports

» Interface description (Port
Type, Operations, Messages)

» Extensible binding section

» Implementation description
(Ports)

= WSDL SOAP binding

» Defines header and fault
support

» Extensibility element for
addressing

= HTTP binding also defined

O HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

Page 37
© Olaf Zimmermann, 2018.

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

Technical Service Contract in WSDL (DDD Sample Application)

<xs:schema wmlns:xs="http:// /www.w3.org/ 2001/ XMLSchema” xmlns:tns="http://ws.handling
{xs:element name="submitReport™ type="tns:submitReport”/>

{xs:element name="submitReportResponse” type="tns:submitReportResponse™ />
¢ws:complexType name="submitReport":

<xs:sequence> m XML elements for
<xs:element minOccurs="8" name="argd" type="tns:handlingReport™/> .
operation parameters

Lf¥sisequences
<fxs:complexType’

¢uscomplexType name="handlingReport™:s aka message parts
{X5:sequencer
¢xs:element name="completionTime"™ type="xs:dateTime"/> B XML Complex types for

¢usz:element maxOccurs="unbounded" name="trackinglds" type="xs:string"/> -
nontrivial DTOs

¢ws:element name="type" type="xs:string"/>
<xs:element name="unLocode" type="xs:string"/»

<xs:element minOccurs="8" name="voyageNumber" type="xs:string"/> [XML baS|C types for
< /x5 sequence
fusicomplexTyper Scalar DTOS

<xs:complexType name="submitReportResponse™:
L¥sisequencef>

<fxs:complexType>

¢xs:element name="HandlingReportErrors" type="tns:HandlingReportErrors"/:»

<xs:complexType name="HandlingReportErrors": . .

{w=sdl:portType name="HandlingReportService">

L¥sisequencef> . .

Lwsdl:operation name="submitReport”:

<fxs:complexType>

<wsdl:input name="submitReport™ message="tns:submitReport">
{fMsischemar

</ wsdl:input>

<wsdl:output name="submitReportResponse” message="tns:submitReportResponse™:
<LSwsdl routputs

¢wsdl:Fault name="HandlingReportErrors" message="tns:HandlingReportErrors":
<fwsdl:faults>
<fwsdl:operations

M HSR 2 =
HOCHSCHULE FUR TECHNIK L INSTITUTE FOR
Page 38 .
B E e H SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2018

https://github.com/joolu/ddd-sample/blob/master/src/main/resources/HandlingReportService.wsdl

[HOCHSCHULE FUR TECHNIK Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

RAPPERSWIL

. . COMPUTER SCIENCE

Bachelor Thesis Fall Term 2015 ZUhIke

empowering ideas

Q Advisor: Prof. Dr. Olaf Zimmermann

Co-Examiner: Prof. Dr. Andreas Rinkel

Software Lukas Kolbener Michael Gysel Project Partner: Zuhlke Engineering AG

A Software Architect’s Dilemma....
()C) Cohesiveness | | Compatibility | I Constraints | | Communication

O Step 1: Analyze System N

] — Entity-relationship model I | I I
How do | split - Use cases - (e) [| [z] [
. — System characterizations ausiy
my SyStem INto — Aggregates (DDD)
services? o o
Coupling information is Pralen

extracted from these artifacts.

Step 2: Calculate Coupling |

— Data fields, operations and artifacts

are nodes. Step 3:
— Edges are coupled data fields. Visualize Service Cuts A = - e
— Scoring system calculates edge m e— a P S
weights. _ — Priorities are used to
— Two different graph clustering reflect the context. Service Cutter
algorithms calculate candidate — Published Language T G recoss | & son
service cuts (=clusters). (DDD) and use case oy
s [—r .
responsibilities are . o A
N 2 R i e M ot
"‘?\-‘f”‘ ST oS S ——] ulmm
\ -\Q,Jﬁ{\%\ — .,

Compaiibility Criteria

Structural voiauiny

U BN
NN
A Technologies:
Java, Maven, Spring (Core,
Hibernate, Jersey, JHipster,
AngularJS, Bootstrap

Consistency Criticallyy
suaiabitty Critieality

Content Velatilty

I =m RAPPERSWIL

https://github.com/ServiceCutter
A clustered, (colors) graph,...

oChsC

Coupling Criteria (CC) in “Service Cutter” (Ref.. ESOCC 2016)

Cohesiveness

Constraints

Communication

Consistency .-
Constraint [Mutability
Security Network Traffic
Constraint Suitability

Semantic
Proximity Shared Owner
Identity &
Lifecycle Latency
Commonality - o
h J i N
Security
Contextuality

Compatibility
Structural Content
Volatility Volatility
Consistency Availability
Criticality Criticality
Storage Security
Similarity Criticality

Predefined
Service
Constraint

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

m E.g. Semantic Proximity can be observed if:

Service candidates are accessed within same use case (read/write)

Service candidates are associated in OOAD domain model

® Coupling impact (note that coupling is a relation not a property):

Change management (e.g., interface contract, DDLS)

Creation and retirement of instances (service instance lifecycle)

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 40
© Olaf Zimmermann, 2020.

INSTITU

TE FOR
SOFTWARE

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

Open Research Problem: Refactoring to Microservices

Traditional SOA

Users

o |@ %

Applications - Services
Logic . .
Data b .
Discrete Applications gacket of Services
(Two or Three Tiers)

@ Research Questions

How to migrate a modular monolith to a services-based cloud application
(a.k.a. cloud migration, brownfield service design)?
Can “micro-migration/modernization” steps be called out?

? Which techniques and practices do you employ? Are you content with them?

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL Page 41
FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2020

INSTITUTE FOR
SOFTWARE

SummerSoC 2019: Joint Work with University to Pisa

package each serviceina

multiple services (
L separate container
(
L

in one container

—
'

[independent deployability

no APl gateway add APl gateway

NP NI

[horizontal scalability add service discovery

endpoint-based service
interactions

add message router

\

\

(N W VR i W N N W N W W N W A N

add message broker

add circuit breaker

[isolation of failures J (wobbly service interactions
use timeouts
add bulkhead
ESB misuse J (rightsize ESB
split database
[decentralisation (shared persistence [add data manager
merge services
single-layer teams } (split teams by service

Reference: Brogi, A., Neri D., Soldani, J., Zimmermann, O., Design Principles, Architectural Smells and
Refactorings for Microservices: A Multivocal Review. CoRR abs/1906.01553 and Springer SICS (2019, to appear)

0 HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 42 : INSTITUTE FOR
. SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2020

