
FROM DOMAIN-DRIVEN DESIGN

TO MICROSERVICE APIS

OF QUALITY AND STYLE:

CONTEXT, CONTRACTS,

COMPONENTS

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

GI-Arbeitskreis Microservices und DevOps

Berlin, March 9, 2020

Teaser Question (not from AppArch Lecture Exam at HSR FHO)

 You have been tasked to develop a RESTful HTTP API for a master data

management system that stores customer records and allows sales staff to

report and analyze customer behavior. The system is implemented in Java

and Spring. A backend B2B channel uses message queues (RabbitMQ).

 What do you do?

a) I hand over to my software engineers and students because all I manage to

do these days is attend meetings and write funding proposals.

b) I annotate the existing Java interfaces with @POST and @GET, as defined in

Spring MVC, JAX-RS etc. and let libraries and frameworks finish the job.

c) I install an API gateway product in Kubernetes and hire a sys admin, done.

d) I design a service layer (Remote Facade with Data Transfer Objects) and

publish an Open API Specification (f.k.a. Swagger) contract. I worry about

message sizes, transaction boundaries, error handling and coupling criteria

while implementing the contract. To resolve such issues, I create my own

novel solutions. Writing infrastructure code and test cases is fun after all!

e) ___ ?

© Olaf Zimmermann, 2020.

Page 2

Agenda Today (And Key Take Away Messages)

1. Context matters

 One size does not fit all (top-level design heuristic: "it depends")

 Strategic and tactic Domain-Driven Design (DDD)

 Context Mapper DSL and tools

2. Contracts rule

 Unified interfaces are great, but not enough

 More SOA and microservices myth busting

 Microservice Domain-Specific Language (MDSL)

3. Components contain (cost and risk)

 Towards a context-driven, contract-first service identification method

 Microservice API Patterns (MAP) to structure the solution space

 (time permitting) Industry trends and resulting research questions

 Microfrontends, containerization, cloud-native 12-factor applications

© Olaf Zimmermann, 2020.

Page 3

SOA 1.0: Order Management Application (Telecommunications)

© Olaf Zimmermann, 2020.

Page 4

Reference: IBM,

ECOWS 2007

Context Matters

© Olaf Zimmermann, 2020.

Page 5

Agile practices

Professional services methods

Experience reports

https://files.ifi.uzh.ch/rerg/amadeus/teaching/courses/it_architekturen_hs08/5_Developing_a_solution_architecture.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7217770

 Many design issues, typically recurring

 per system/team

Policies reference
customer data

Data and control flow direction?

Data formats (norms, transformations)?

Frequency of message exchange?

“Fictitious” Insurance Application/Integration Landscape

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 6

Design issue

(decision required)

Data duplication and/or

on-demand exchange?

Strict/eventual consistency?

Realization/ and procurement

(sourcing, staffing):

Buy? Build? Rent?

Technology? Vendor? Team?

Subdomain,
System, Team

, per relationship, per interface

Client influence on API design and

stability/evolution (governance)?

API contracts and technologies?

System

decomposition?

Domain-Driven Design (DDD) Overview

 Emphasizes need for modeling and communication

 Ubiquitous language (vocabulary) – the domain model

 Tactic DDD – “Object-Oriented Analysis and Design
(OOAD) done right”

 Emphasis on business logic in layered architecture

 Decomposes Domain Model pattern from M. Fowler

 Patterns for common roles, e.g. Entity, Value Object,

Repository, Factory, Service; grouped into Aggregates

 Strategic DDD – “agile Enterprise Architecture

and/or Portfolio Management”

 Models have boundaries

 Teams, systems and

their relations shown in

Context Maps of

Bounded Contexts

Page 7

© Olaf Zimmermann, 2020.

https://martinfowler.com/eaaCatalog/domainModel.html

A Strategic DDD Context Map with Relationships

 Insurance scenario, example model from https://contextmapper.org/

Page 8

© Stefan Kapferer, Olaf Zimmermann, 2020.

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

Bounded
Context

https://contextmapper.org/
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Context Mapper: A DSL for Strategic DDD

 Eclipse plugin, based on:

 Xtext, ANTLR

 Sculptor (tactic DDD DSL)

 Creator: S. Kapferer

 Term projects and Master thesis @ HSR FHO

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 9

SK: Shared Kernel, PL: Published Language

D: Downstream, U: Upstream

ACL: Anti-Corruption Layer, OHS: Open Host Service

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Context Mapper: DSL implements Meta-Model and Semantics

 A Domain-Specific Language (DSL) for DDD:

 Formal, machine-readable DDD Context Maps via editors and validators

 Model/code generators to convert models into other representations

 Model transformations for refactorings (e.g., “Split Bounded Context”)

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 10

Plugin update site: https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/

https://dl.bintray.com/contextmapper/context-mapping-dsl/updates/

Context Mapper: Domain-Specific Language

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 11

ContextMap DDDSampleMap {

contains CargoBookingContext

contains VoyagePlanningContext

contains LocationContext

CargoBookingContext [SK]<->[SK] VoyagePlanningContext

[U,OHS,PL] LocationContext -> [D] CargoBookingContext

VoyagePlanningContext [D]<-[U,OHS,PL] LocationContext

}

DDD relationship patterns

(role of endpoint)

Influence/data flow direction: ->, <->

(upstream-downstream or symmetric)

Bounded Contexts

(systems or teams)

SK: Shared Kernel, PL: Published Language

D: Downstream, U: Upstream

ACL: Anti-Corruption Layer, OHS: Open Host Service

http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
http://www.methodsandtools.com/archive/archive.php?id=97

Tool Big Picture

 Context Mapper

architecture

 Modelled with Context

Mapper DSL

 UML generated

© Olaf Zimmermann, 2020.

Page 12

Agenda Today (And Key Take Away Messages)

1. Context matters

 One size does not fit all (top-level design heuristic: "it depends")

 Strategic and tactic Domain-Driven Design (DDD)

 Context Mapper DSL and tools

2. Contracts rule

 Unified interfaces are great, but not enough

 More SOA and microservices myth busting

 Microservice Domain-Specific Language (MDSL)

3. Components contain (cost and risk)

 Towards a context-driven, contract-first service identification method

 Microservice API Patterns (MAP) to structure the solution space

 (time permitting) Industry trends and resulting research questions

 Microfrontends, containerization, cloud-native 12-factor applications

© Olaf Zimmermann, 2020.

Page 13

"Napkin Sketch" of SOA Realizations (Adopted from G. Hohpe)

Page 14

© Olaf Zimmermann, 2020.

Our focus:

Microservices!

Middleware less popular,

often custom build (term

also used in deployment

and clustering context)

Optional (then

and now)

(data) contracts

Mythbusting (1/4): SOA 1.0 (2003/2004 to 2008/2009)

 Myth: SOA and microservices solve different problems, not comparable

 Application boundaries blurred in the Web age

 See Microservices Tenets article, see OOPSLA practitioner reports

 Myth: Traditional SOA is "heavyweight" and requires centralization and

enterprise-wide data normalization in an Enterprise Service Bus (ESB)

 What is heavyweight (definition)? Resource usage? Maintenance?

 SOAP also uses HTTP by default; JSON not much lighter than "nice" XML

 Have a look at the dependencies of services meshes (example: Istio)

 Most practices recommended today already appeared in the (good) SOA

tutorials in the 2000s

 e.g. no canonical data model, no single point of failure, no business logic in ESB

 Yes, poor SIA implementations did occur (but that also holds for microservices)

 Myth: SOA and XML-based "Web" services are coupled with each other

 Actually, they are less related that REST and HTTP are

 Although REST claims to be an architectural style (only implemented once)

© Olaf Zimmermann, 2020.

Page 15

http://rdcu.be/mJPz

Mythbusting (2/4): Web Services and REST

 Myth: REST is a protocol

 It is an architectural style defined by abstract constraints

 So asking for a “REST API” is like asking for “Gothic window” (material?)

 Myth: SOAP is a protocol

 It is a message exchange format, HTTP typically used for message transfer

 Other protocols (theoretically) possible

 Myth: REST and SOAP can be compared

 Can the Gothic style and concrete building materials/norms be compared?

 Myth: Thought leaders are objective and independent

 There is an “industrial NN complex” (NN = Agile, REST, …)

 To paraphrase M. Fowler at Agile Australia

 Book authors and consultants do have commercial agendas (lie vendors)

 And should not reference their own papers/books only (SOA Design Patterns?)

© Olaf Zimmermann, 2020.

Page 16

A Consolidated Definition of Microservices

 Microservices architectures evolved from previous incarnations of

Service-Oriented Architectures (SOAs) to promote agility and elasticity

 Independently deployable, scalable and changeable services,

each having a single responsibility

 Modeling business capabilities

 Often deployed in lightweight containers

 Encapsulating their own state, and communicating via message-based

remote APIs (HTTP, queueing), IDEALly in a loosely coupled fashion

 Facilitating polyglot programming and persistence

 Leveraging DevOps practices including decentralized continuous delivery

and end-to-end monitoring (for business agility and domain observability)

© Olaf Zimmermann, 2020.

Page 17

Detailed analysis: Zimmermann, O., Microservices

Tenets: Agile Approach to Service Development

and Deployment, Springer Journal of Computer

Science Research and Development (2017)

https://www.ifs.hsr.ch/fileadmin/user_upload/customers/ifs.hsr.ch/Home/projekte/ZIO-CHOpenDay-CCaSAWAv10p.pdf
http://rdcu.be/mJPz

Mythbusting (3/4): Microservices (since 2014)

 Myth: Self-Contained Systems are new, different form MS(A) and

“monolith”

 Evidence: e.g., S. Brown: Modular Monolith

 Myth: Distributed service mesh sidecars are easier to create, configure,

manage than SOA-days ESBs

 Evidence: notion of federated ESBs, EIP pattern mapping

 Open source lock in replacing vendor lock in

 Myth: RESTful HTTP is the only protocol that is required and permitted

 MOM and even RPC have their place

 Evidence: Google gRPC, S. Newman first book on Microservices

 Myth: Unified interface is sufficient as contract

 The success of Swagger/Open API Specification suggests that more

elaborate API Descriptions are required

 Data contract, pre- and postconditions, error handling, …

© Olaf Zimmermann, 2020.

Page 18

https://www.youtube.com/watch?v=5OjqD-ow8GE
https://microservice-api-patterns.org/patterns/foundation/APIDescription.html

OpenAPI Specification (OAS): An Interface Definition Language (IDL)

 Wikipedia lists (only) 23 IDLs

 OAS is one of them

 Bound to HTTP

© Olaf Zimmermann, 2020.

Page 19

https://en.wikipedia.org/wiki/Interface_description_language
http://swagger.io/

Contracts in Microservice Domain-Specific Language (MDSL)

Page 20

How does this notation compare

to Swagger/JSON Schema

and WSDL/XSD?

© Olaf Zimmermann, 2020.

 Data contract

 Compact, technology-neutral

 Inspired by JSON, regex

 Endpoints and operations

 Elaborate, terminology from

MAP domain model

 Abstraction of REST resource

 Abstraction of WS-* concepts

 API client, provider, gateway;

governance (SLA, version, …)

Reference: https://socadk.github.io/MDSL/index

https://socadk.github.io/MDSL/index

Mythbusting (4/4): (Micro-)Services Design

 Myth: Services always must be small/fine-grained

 How to measure? How to observe?

 What about dependencies? They increase.

 Myth: A business capability has to be a function

 And Entity Service (always) are an anti pattern

 Archive? Logbook? File share?

 Myth: The DDD patterns fully solve the decomposition problem

 Process required (and related knowleddge/patterns), see here and here

 Subdomains and Aggregates and Bounded Contexts (BCs) are as hard to

find as services, so "turn BC into microservice" only delegates the problem

 Myth: “Hello World” implementations are suited to demonstrate the

value and price of microservices

 Domain model needs to have a certain size and complexity e.g., to see

ramifications of replication, eventual consistency (see Lakeside Mutual)

© Olaf Zimmermann, 2020.

Page 21

https://ifs.hsr.ch/index.php?id=15266&L=4
https://ifs.hsr.ch/index.php?id=15666&L=4
https://github.com/Microservice-API-Patterns/LakesideMutual

Agenda Today (And Key Take Away Messages)

1. Context matters

 One size does not fit all (top-level design heuristic: "it depends")

 Strategic and tactic Domain-Driven Design (DDD)

 Context Mapper DSL and tools

2. Contracts rule

 Unified interfaces are great, but not enough

 More SOA and microservices myth busting

 Microservice Domain-Specific Language (MDSL)

3. Components contain (cost and risk)

 Towards a context-driven, contract-first service identification method

 Microservice API Patterns (MAP) to structure the solution space

 (time permitting) Industry trends and resulting research questions

 Microfrontends, containerization, cloud-native 12-factor applications

© Olaf Zimmermann, 2020.

Page 22

DDD Applied to (Micro-)Service Design

 M. Ploed is one of the “go-to-guys” here (find him on Speaker Deck)

 Applies and extends DDD books by E. Evans and V. Vernon

© Olaf Zimmermann, 2020.

Page 23

Reference: JUGS presentation, Bern/CH, Jan 9, 2020

https://speakerdeck.com/mploed
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2

DDD and Service Identification/Design

https://preview.microservice-api-patterns.org/patterns/tutorials/tutorial2

© Olaf Zimmermann, 2020.

Page 24

Input: analysis model, NFRs

Output: API contracts (here: MDSL)

Tasks: Select pattern, refine design, refactor

https://preview.microservice-api-patterns.org/patterns/tutorials/tutorial2

Calls to Service Operations

Page 25

© Olaf Zimmermann, 2020.

PayloadHeader
Envelope

Header Payload

Wrapper

Payload

Header Payload

Wrapper

Envelope

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

Sample request

message

(note: PUTs and POSTs

would look different)

Response

message

structure

{[…]}

{[…]}

are EIP-style Messages

{[…]} -- some JSON (or other MIME type)

+/-?

Embed nested

entity data?

or

Link to sparate

iresource?

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

Introducing… Microservice API Patterns (MAP)

 Identification Patterns:

 DDD as one practice to

find candidate endpoints

and operations

 Evolution Patterns:

 Recently workshopped

(EuroPLoP 2019)

© Olaf Zimmermann, 2020.

Page 26

http://microservice-api-patterns.org

http://microservice-api-patterns.org/

Microservices API Patterns (MAP): Pattern Index by Category

Page 27

© Olaf Zimmermann, 2020.

http://microservice-api-patterns.org

EuroPLoP 2019

EuroPLoP 2017

EuroPLoP 2018

http://microservice-api-patterns.org/

API Description Pattern

 Which knowledge should be

shared between an API

provider and its clients?

 How should this knowledge

be documented?

© Olaf Zimmermann, 2020.

Page 28

https://microservice-api-patterns.org/patterns/foundation/APIDescription.html

https://microservice-api-patterns.org/patterns/foundation/APIDescription.html

MAP Example: Pagination (1/2)

 Context

 An API endpoint and its calls have been identified and specified.

 Problem

 How can an API provider optimize a response to an API client that should

deliver large amounts of data with the same structure?

 Forces

 Data set size and data access profile (user needs), especially number of

data records required to be available to a consumer

 Variability of data (are all result elements identically structured? how often

do data definitions change?)

 Memory available for a request (both on provider and on consumer side)

 Network capabilities (server topology, intermediaries)

 Security and robustness/reliability concerns

Page 29

© Olaf Zimmermann, 2020.

MAP Example: Pagination (2/2)

 Solution

 Divide large response data sets into manageable and easy-to-transmit chunks.

 Send only partial results in the first response message and inform the consumer

how additional results can be obtained/retrieved incrementally.

 Process some or all partial responses on the consumer side iteratively as

needed; agree on a request correlation and intermediate/partial results

termination policy on consumer and provider side.

 Variants

 Cursor-based vs. offset-based

 Consequences

 E.g. state management required

 Know Uses

 Public APIs of social networks

Page 30

© Olaf Zimmermann, 2020.

Mini-Exercise: Can MAP serve as a map/guide to API design?

 Let’s have a look at the language organization and selected patterns…

 http://microservice-api-patterns.org

 Website public since 2/2019; experimental preview site available to beta testers

 Sample patterns (suggestions):

 Request Bundle, Embedded Entity, Wish List, API Key, Two in Production

 Questions:

 Do you agree with our hypothesis: knowledge on API design is beneficial?

 Do names and icons work for you/make sense/communicate the essence?

 Would you have expected different patterns?

 How about template and category structure?

 E.g. quality category

 E.g. implementation hints (not on website, but in EuroPLoP papers)

 Which coupling criteria matter for (micro-)service decomposition?

© Olaf Zimmermann, 2020.

Page 31

http://microservice-api-patterns.org/
https://microservice-api-patterns.org/

Key Messages of this Talk

 It is the API contract (and its implementations) that make or break

projects – not (or not only) middleware and tools

 Frameworks and infrastructures come and go, APIs stay

 Microservice API Patterns (MAP) language/components

 Public MAP website now available in Version 1.2.1

 20+ patterns, sample implementation in public repo, supporting tools

 Microservices Domain-Specific Language (MDSL)

 Uses MAPs in service contracts (as decorators)

 Can be generated from DDD bounded contexts

 Context Mapper tool supporting strategic Domain-Driven Driven

Design (DDD) and architectural refactoring

 Other tools emerging

 Research areas (ZIO):

 Service modeling, identification, decomposition, refactoring

© Olaf Zimmermann, 2020.

Page 32

https://microservice-api-patterns.org/

Teaser Question Revisited

 You had been tasked to develop a RESTful HTTP API for a master data

management system that stores customer records and allows sales staff to

analyze customer behavior. The system is implemented in Java and Spring.

A backend B2B channel uses message queues (RabbitMQ).

 What do you do (now)?

a) I hand over to my software engineers and students because all I manage to

do these days is attend meetings and write funding proposals.

b) I annotate the existing Java interfaces with @POST and @GET, as defined in

Spring MVC or JAX-RS etc . and let libraries and frameworks finish the job.

c) I install an API gateway product in Kubernetes and hire a sys admin, done.

d) I design a service layer (Remote Facade with Data Transfer Objects) and

publish an Open API Specification (f.k.a. Swagger) contract. I worry about

message sizes, transaction boundaries, error handling and coupling criteria

while implementing the contract. To resolve such issues, I create my own

novel solutions. Writing infrastructure code and test cases is fun after all!

e) I leverage Context Mapper, MDSL, MAP for API design and evolution 

© Olaf Zimmermann, 2020.

Page 33

FROM DOMAIN-DRIVEN DESIGN

TO MICROSERVICE APIS

OF QUALITY AND STYLE –

BACKUP CHARTS

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

GI-Arbeitskreis Microservices und DevOps

Berlin, March 9, 2020

DDD Applied to (Micro-)Service Design ctd., Source:

 N. Tune and S. Millett: Designing Autonomous Teams and Services

 Describe how to coevolve organizational and technical boundaries to

architect autonomous applications and teams based on DDD Bounded

Contexts and (micro-)services.

 O. Tigges: How to break down a Domain to Bounded Contexts

 Presents criteria to be used to identify Bounded Contexts.

 R. Steinegger et al.: Overview of a Domain-Driven Design Approach to

Build Microservice-Based Applications

 Describes a development process to build MSA applications based on the

DDD concepts, emphasizing the importance of decomposing a system in

several iterations.

 A. Brandolini: Introducing Event Storming

 Proposes a workshop-based technique to analyze a domain and discover

bounded contexts, following events through the system/business process

and detecting commands, entities (and more) along the way.

© Stefan Kapferer, Olaf Zimmermann, 2020.

Page 35

https://www.oreilly.com/library/view/designing-autonomous-teams/9781491994320/
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://www.semanticscholar.org/paper/Overview-of-a-Domain-Driven-Design-Approach-to-Steinegger-Giessler/c27543389bf0f9d5ac337963c474496979ef2a2d
https://leanpub.com/introducing_eventstorming

From DDD to RESTful HTTP APIs

 “Implementing DDD” book by V. Vernon (and blog posts, presentations):

 No 1:1 pass-through (interfaces vs. application/domain layer)

 Bounded Contexts (BCs) realized by API provider: one service API and IDE

project for each team/system BC (a.k.a. microservice)

 Aggregates supply API resources (or responsibilities) of service endpoints

 Services donate top-level (home) resources in BC endpoint as well

 The Root Entity, the Repository and the Factory in an Aggregate suggest

top-level resources; contained entities yield sub-resources

 Repository lookups as paginated queries (GET with search parameters)

 Additional rules of thumb (from our experience and additional sources):

 Master data and transactional data go to different contexts/aggregates

 Creation requests to Factories become POSTs

 Entity modifiers become PUTs or PATCHes

 Value Objects appear in the custom mime types representing resources

© Olaf Zimmermann, 2020.

Page 36

https://www.youtube.com/watch?v=lUCLFOISuXk
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/DDD_Aggregate.html
http://gorodinski.com/blog/2012/04/14/services-in-domain-driven-design-ddd/
https://martinfowler.com/eaaCatalog/repository.html
https://microservice-api-patterns.org/
https://www.ifs.hsr.ch/index.php?id=15666&L=4

SOA 1.0: WSDL (XML Language for Service Descriptions)

Page 37

© Olaf Zimmermann, 2018.

 WSDL document elements

 Type definitions and imports

 Interface description (Port

Type, Operations, Messages)

 Extensible binding section

 Implementation description

(Ports)

 WSDL SOAP binding

 Defines header and fault

support

 Extensibility element for

addressing

 HTTP binding also defined

“type

definition”

faultfault

port

Containment

Relationship

Linked-to

Relationship

binding

operation

input output fault

operation

1

1

n

n

port

binding

service

n

message

operation

types

“type

definition”

n
element /

type

message

part

n

part

input output fault

operation

1
1

n

message

message

portType

n

type

identical name attributes

identical name attributes

or element names

Logical relationships between WSDL elements

Web Services Description Language (WSDL)

Technical Service Contract in WSDL (DDD Sample Application)

 XML elements for

operation parameters

 a.k.a. message parts

 XML complex types for

nontrivial DTOs

 XML basic types for

scalar DTOs

Page 38

© Olaf Zimmermann, 2018.

https://github.com/joolu/ddd-sample/blob/master/src/main/resources/HandlingReportService.wsdl

 Entity-relationship model

 Use cases

 System characterizations

 Aggregates (DDD)

Coupling information is

extracted from these artifacts.

Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

Advisor: Prof. Dr. Olaf Zimmermann

Co-Examiner: Prof. Dr. Andreas Rinkel

Project Partner: Zühlke Engineering AG

Bachelor Thesis Fall Term 2015

Software Lukas Kölbener Michael Gysel

A Software Architect’s Dilemma….

Step 1: Analyze System

Step 2: Calculate Coupling

Step 3:

Visualize Service Cuts

How do I split

my system into

services?

 Data fields, operations and artifacts

are nodes.

 Edges are coupled data fields.

 Scoring system calculates edge

weights.

 Two different graph clustering

algorithms calculate candidate

service cuts (=clusters).

A clustered (colors) graph.

Technologies:

Java, Maven, Spring (Core,

Boot, Data, Security, MVC),

Hibernate, Jersey, JHipster,

AngularJS, Bootstrap

The catalog of 16 coupling criteria

https://github.com/ServiceCutterA clustered (colors) graph.

 Priorities are used to

reflect the context.

 Published Language

(DDD) and use case

responsibilities are

shown.

Coupling Criteria (CC) in “Service Cutter” (Ref.: ESOCC 2016)

 E.g. Semantic Proximity can be observed if:

 Service candidates are accessed within same use case (read/write)

 Service candidates are associated in OOAD domain model

 Coupling impact (note that coupling is a relation not a property):

 Change management (e.g., interface contract, DDLs)

 Creation and retirement of instances (service instance lifecycle)

Page 40

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

© Olaf Zimmermann, 2020.

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

Open Research Problem: Refactoring to Microservices

Page 41

Research Questions

How to migrate a modular monolith to a services-based cloud application

(a.k.a. cloud migration, brownfield service design)?

Can “micro-migration/modernization” steps be called out?

Which techniques and practices do you employ? Are you content with them?

© Olaf Zimmermann, 2020.

SummerSoC 2019: Joint Work with University to Pisa

Reference: Brogi, A., Neri D., Soldani, J., Zimmermann, O., Design Principles, Architectural Smells and

Refactorings for Microservices: A Multivocal Review. CoRR abs/1906.01553 and Springer SICS (2019, to appear)

© Olaf Zimmermann, 2020.

Page 42

